3.11.38 \(\int \frac {x^2}{\sqrt [4]{2-3 x^2} (4-3 x^2)} \, dx\) [1038]

Optimal. Leaf size=148 \[ \frac {\sqrt [4]{2} \tan ^{-1}\left (\frac {2^{3/4}-\sqrt [4]{2} \sqrt {2-3 x^2}}{\sqrt {3} x \sqrt [4]{2-3 x^2}}\right )}{3 \sqrt {3}}+\frac {\sqrt [4]{2} \tanh ^{-1}\left (\frac {2^{3/4}+\sqrt [4]{2} \sqrt {2-3 x^2}}{\sqrt {3} x \sqrt [4]{2-3 x^2}}\right )}{3 \sqrt {3}}-\frac {2 \sqrt [4]{2} E\left (\left .\frac {1}{2} \sin ^{-1}\left (\sqrt {\frac {3}{2}} x\right )\right |2\right )}{3 \sqrt {3}} \]

[Out]

1/9*2^(1/4)*arctan(1/3*(2^(3/4)-2^(1/4)*(-3*x^2+2)^(1/2))/x/(-3*x^2+2)^(1/4)*3^(1/2))*3^(1/2)+1/9*2^(1/4)*arct
anh(1/3*(2^(3/4)+2^(1/4)*(-3*x^2+2)^(1/2))/x/(-3*x^2+2)^(1/4)*3^(1/2))*3^(1/2)-2/9*2^(1/4)*(cos(1/2*arcsin(1/2
*x*6^(1/2)))^2)^(1/2)/cos(1/2*arcsin(1/2*x*6^(1/2)))*EllipticE(sin(1/2*arcsin(1/2*x*6^(1/2))),2^(1/2))*3^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 148, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {451, 234, 406} \begin {gather*} -\frac {2 \sqrt [4]{2} E\left (\left .\frac {1}{2} \text {ArcSin}\left (\sqrt {\frac {3}{2}} x\right )\right |2\right )}{3 \sqrt {3}}+\frac {\sqrt [4]{2} \text {ArcTan}\left (\frac {2^{3/4}-\sqrt [4]{2} \sqrt {2-3 x^2}}{\sqrt {3} x \sqrt [4]{2-3 x^2}}\right )}{3 \sqrt {3}}+\frac {\sqrt [4]{2} \tanh ^{-1}\left (\frac {\sqrt [4]{2} \sqrt {2-3 x^2}+2^{3/4}}{\sqrt {3} x \sqrt [4]{2-3 x^2}}\right )}{3 \sqrt {3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/((2 - 3*x^2)^(1/4)*(4 - 3*x^2)),x]

[Out]

(2^(1/4)*ArcTan[(2^(3/4) - 2^(1/4)*Sqrt[2 - 3*x^2])/(Sqrt[3]*x*(2 - 3*x^2)^(1/4))])/(3*Sqrt[3]) + (2^(1/4)*Arc
Tanh[(2^(3/4) + 2^(1/4)*Sqrt[2 - 3*x^2])/(Sqrt[3]*x*(2 - 3*x^2)^(1/4))])/(3*Sqrt[3]) - (2*2^(1/4)*EllipticE[Ar
cSin[Sqrt[3/2]*x]/2, 2])/(3*Sqrt[3])

Rule 234

Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Simp[(2/(a^(1/4)*Rt[-b/a, 2]))*EllipticE[(1/2)*ArcSin[Rt[-b/a,
2]*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b/a]

Rule 406

Int[1/(((a_) + (b_.)*(x_)^2)^(1/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> With[{q = Rt[b^2/a, 4]}, Simp[(-b/(2*a
*d*q))*ArcTan[(b + q^2*Sqrt[a + b*x^2])/(q^3*x*(a + b*x^2)^(1/4))], x] - Simp[(b/(2*a*d*q))*ArcTanh[(b - q^2*S
qrt[a + b*x^2])/(q^3*x*(a + b*x^2)^(1/4))], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c - 2*a*d, 0] && PosQ[b^2/a
]

Rule 451

Int[(x_)^(m_)/(((a_) + (b_.)*(x_)^2)^(1/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Int[ExpandIntegrand[x^m/((a +
b*x^2)^(1/4)*(c + d*x^2)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c - 2*a*d, 0] && IntegerQ[m] && (PosQ[a]
|| IntegerQ[m/2])

Rubi steps

\begin {align*} \int \frac {x^2}{\sqrt [4]{2-3 x^2} \left (4-3 x^2\right )} \, dx &=\int \left (-\frac {1}{3 \sqrt [4]{2-3 x^2}}+\frac {4}{3 \sqrt [4]{2-3 x^2} \left (4-3 x^2\right )}\right ) \, dx\\ &=-\left (\frac {1}{3} \int \frac {1}{\sqrt [4]{2-3 x^2}} \, dx\right )+\frac {4}{3} \int \frac {1}{\sqrt [4]{2-3 x^2} \left (4-3 x^2\right )} \, dx\\ &=\frac {\sqrt [4]{2} \tan ^{-1}\left (\frac {2^{3/4}-\sqrt [4]{2} \sqrt {2-3 x^2}}{\sqrt {3} x \sqrt [4]{2-3 x^2}}\right )}{3 \sqrt {3}}+\frac {\sqrt [4]{2} \tanh ^{-1}\left (\frac {2^{3/4}+\sqrt [4]{2} \sqrt {2-3 x^2}}{\sqrt {3} x \sqrt [4]{2-3 x^2}}\right )}{3 \sqrt {3}}-\frac {2 \sqrt [4]{2} E\left (\left .\frac {1}{2} \sin ^{-1}\left (\sqrt {\frac {3}{2}} x\right )\right |2\right )}{3 \sqrt {3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.
time = 6.01, size = 37, normalized size = 0.25 \begin {gather*} \frac {x^3 F_1\left (\frac {3}{2};\frac {1}{4},1;\frac {5}{2};\frac {3 x^2}{2},\frac {3 x^2}{4}\right )}{12 \sqrt [4]{2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/((2 - 3*x^2)^(1/4)*(4 - 3*x^2)),x]

[Out]

(x^3*AppellF1[3/2, 1/4, 1, 5/2, (3*x^2)/2, (3*x^2)/4])/(12*2^(1/4))

________________________________________________________________________________________

Maple [F]
time = 0.04, size = 0, normalized size = 0.00 \[\int \frac {x^{2}}{\left (-3 x^{2}+2\right )^{\frac {1}{4}} \left (-3 x^{2}+4\right )}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(-3*x^2+2)^(1/4)/(-3*x^2+4),x)

[Out]

int(x^2/(-3*x^2+2)^(1/4)/(-3*x^2+4),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-3*x^2+2)^(1/4)/(-3*x^2+4),x, algorithm="maxima")

[Out]

-integrate(x^2/((3*x^2 - 4)*(-3*x^2 + 2)^(1/4)), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-3*x^2+2)^(1/4)/(-3*x^2+4),x, algorithm="fricas")

[Out]

integral((-3*x^2 + 2)^(3/4)*x^2/(9*x^4 - 18*x^2 + 8), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {x^{2}}{3 x^{2} \sqrt [4]{2 - 3 x^{2}} - 4 \sqrt [4]{2 - 3 x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(-3*x**2+2)**(1/4)/(-3*x**2+4),x)

[Out]

-Integral(x**2/(3*x**2*(2 - 3*x**2)**(1/4) - 4*(2 - 3*x**2)**(1/4)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-3*x^2+2)^(1/4)/(-3*x^2+4),x, algorithm="giac")

[Out]

integrate(-x^2/((3*x^2 - 4)*(-3*x^2 + 2)^(1/4)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} -\int \frac {x^2}{{\left (2-3\,x^2\right )}^{1/4}\,\left (3\,x^2-4\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-x^2/((2 - 3*x^2)^(1/4)*(3*x^2 - 4)),x)

[Out]

-int(x^2/((2 - 3*x^2)^(1/4)*(3*x^2 - 4)), x)

________________________________________________________________________________________